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Highlights
Influenza evolves to escape immunity,
but antigenic substitutions rarely escape
immunity equally in all hosts. Birth
cohorts, each composed of hosts with
similar infection histories, often differ in
susceptibility to new influenza strains.

Descriptive studies, which identify
cohort-associated differences in sus-
ceptibility and sometimes relate them
to differences in initial infection, are
common. However, the strength and
In a pattern called immune imprinting, individuals gain the strongest immune
protection against the influenza strains encountered earliest in life. In many
recent examples, differences in early infection history can explain birth year-
associated differences in susceptibility (cohort effects). Susceptibility shapes
strain fitness, but without a clear conceptual model linking host susceptibility to
the identity and order of past infections general conclusions on the evolutionary
and epidemic implications of cohort effects are not possible. Failure to differentiate
between cohort effects caused by differences in the set, rather than the order
(path), of past infections is a current source of confusion. We review and refine
hypotheses for path-dependent cohort effects, which include imprinting. We high-
light strategies to measure their underlying causes and emergent consequences.
persistence of observed effects varies,
and the mechanisms underlying these
patterns are ill-defined.

Understanding the epidemic and evolu-
tionary impacts of cohort effects is not
possible without a clear conceptual
model for how these differences arise.

We argue that focusing on specific,
measurable causes and consequences
of cohort effects is the best way to
cut through semantic confusion, draw
appropriate connections between
observed epidemiological examples,
and understand their evolutionary
implications.
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Host susceptibility shapes strain fitness
For influenza and other pathogens that evolve to escape adaptive host immunity, a combination
of viral factors (including sequence and structure) and host factors (including adaptive immune
repertoire), determine a strain’s fitness, defined as its ability to exploit susceptible hosts. How-
ever, antigenic changes do not escape immunity equally in hosts with different immune histories
[1–3]. Episodic antigenic innovations (see Glossary) allow influenza viruses of a given subtype
(e.g., H1N1 or H3N2) to escape some population immunity and cause epidemics [3–5]. Many
studies of immune escape by influenza focus primarily on viral factors, asking, for example,
what constrains antigenic diversity and evolution (e.g., [4–7]), which sites on viral proteins are
under positive selection (e.g., [8–10]), or which variants are likely to rise in frequency
(e.g., [11–13]), without explicitly considering who in the host population has become most
vulnerable to reinfection as a result of these antigenic changes.

A variant’s potential to escape host immunity depends both on the variant’s phenotypic dissimilarity
from past strains (usually measured by antigenic distance [14–18]) and on the host’s adaptive
immune background.Models that account for path dependence in development of a host’s immune
repertoire, in which the order (path) and identity (set) of past exposures both affect susceptibility
[14,19–24], can reproduce complex patterns observed in data. Such patterns include history-
dependent immune escape, wherein the level of cross-protection that hosts gain against a given
strain, y, from a recent infection or immunization with a closely related strain, x, depends on their
immune history [1–3,14,22–35], despite the fact that there is a fixed degree of dissimilarity (a fixed
antigenic distance) between strains x and y (Figure 1D, Key figure and Box 1). Still, approaches to
modeling path-dependence vary [14,19–24], and some common modeling approaches do not
account for path dependence at all. For example, some models assume that susceptibility depends
only on the identity of strains (or antigens or epitopes) encountered in the past, not on the order of
those encounters (Figure 1E) [4–7,18,36]. Models are a key tool used to study the relationship
between influenza’s epidemic and evolutionary dynamics, and to link observations made at the
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Key figure

Hypythesizedmechanisms for preferential immunememory against strains
encountered in childhood

(A)

(D)

(E)

(F) (G) (H)

(B) (C)

TrendsTrends inin MicrobiologyMicrobiology

Figure 1. (A) Influenza viruses evolve antigenically over time. (B) A hypothetical example of an antibody landscape tha
reconciles two observed patterns: on average, infection causes the largest boost to the current strain (arrow) [32], bu
absolute titers remain highest to childhood strains due to back-boosting, wherein titers rise simultaneously to curren
and past strains, which have some antigenic homology [32,45,48,62]. The broken line represents a hypothetical 50%
protective titer. (C) Repeated recall of cross-reactive memory leads to a pattern in which titers are, on average, highest to
the strains that circulated in childhood [45,62]. (D) Original antigenic sin (OAS) can cause path-dependent immune
repertoire development. When hosts with different immune histories are subsequently infected with strain x, existing

(Figure legend continued at the bottom of the next page.
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Glossary
Antibody landscape: a strategy for
analysis and visualization of titers to
many strains in which the x-axis shows
the scaled antigenic distance between
strains and the y-axis shows smoothed
titers to each strain [32] (similar to Figure
1B).
Antigenic distance: a measure of
dissimilarity between influenza strains.
Most antigenic distance measures are
derived from serological assays and
sometimes incorporate sequence data.
Back-boosting: a pattern wherein
infections recall and boost cross-
reactive memory of antigens seen in the
past. This results in an increase in titer
that is temporally centered at the current
strain, but that also raises titers to
antigenically homologous past (depicted
in Figure 1B).
Birth cohort: a group of individuals,
born at a similar point in time, that are
exposed to similar influenza viruses and
may follow similar trajectories of immune
repertoire development.
Cohort effects: birth year-specific
differences in influenza susceptibility.
Episodic antigenic innovation: a
pattern of epochal evolution in which
genetic changes accumulate
continuously, but phenotypic
innovations are more sudden. Episodic
innovations can be visualized as cluster
transitions in antigenic maps, where
antigenically similar strains cluster
together, and occasional phenotypic
innovations cause new clusters to
appear.
Epitope bias: a phenomenon in which
subsequent immune responses are
dominated by recalled memory and
increasingly focus on influenza virus
epitopes conserved between current
and past strains.
Epitope masking: the hypothesis that
pre-existing antibodies to a given
epitope can interfere with titer boosting
to that epitope. This can occur if
antibodies bound to a particular site on
the antigen occlude B cell access,
thereby inhibiting stimulation and
replication of cognate clones (depicted
in Figure 1G,H).
Immunodominance: the
phenomenon whereby the immune
system does not target all epitopes
equally. Immunodominant epitopes are
the focus of an immune response.
Immunodominance hierarchies can
depend on both viral factors (structural
accessibility and binding affinity of
t
t
t
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Box 1. Examples of imprinting and other cohort effects

A strain’s fitness

● In the 2013–2014 influenza season, H1N1 influenza acquired a K166Q substitution. This substitution abrogated immunity
and caused a disproportionate number of cases in middle-aged adults born between 1965 and 1979 [2,52].

● Some middle-aged adults (born in the 1960s and 70s) are perpetually susceptible to the 3c2.A clade of H3N2 influenza.
Repeated recall of antibodies that can bind but not neutralize these viruses interferes with the development of de novo
responses capable of preventing infection [1].

Vaccine effectiveness

● In the 2018–2019 influenza season, vaccine effectiveness against the dominant H3N2 strains that circulated in Europe and
Canada varied dramatically by birth cohort [29]. Measured vaccine effectiveness was much lower in 35- to 54-year-olds
than in any other cohort. Although the exact mechanism has not been resolved, cohort-associated differences in immune
history are the main hypothesis [29,31].

Susceptibility to pandemic influenza viruses

● The 1918 H1N1 pandemic was characterized by an unusual 'W-shaped' mortality pattern, in which deaths occurred
disproportionately in young adults (who formed the 'W’s' middle peak), and at the extremes of age [53]. One hypothesis
for these unusual mortality patterns centers on differences in imprinting: childhood exposures to a mismatched strain
may have left young adults (born between 1889 and 1900) susceptible to severe disease in 1918 [40,43].

● The 2009 H1N1 pandemic strain caused a disproportionate number of cases in younger cohorts (born after 1980) but
spared older cohorts who had cross-protective immunity fromexposures to historical H1N1 strains [3,35,54,55]. Primary
infection with the 1957 pandemic strain has also been associated with elevated risk in the 2009 pandemic [41].

Susceptibility to avian influenza viruses

● Avian influenza subtypes H5N1 (group 1) and H7N9 (group 2) have spilled over repeatedly from poultry into humans. Most
H5N1cases occur in children and young adults,whereasH7N9cases occur in older adults. These patterns can be explained
by differences in childhood imprinting: older cohorts (imprinted to group 1 flu viruses) show the strongest protection against
H5N1, whereas younger cohorts (imprinted to group 2 viruses) show the strongest protection against H7N9 [37].

Susceptibility to seasonal influenza subtypes

● Two influenza A virus subtypes, H1N1 and H3N2, currently circulate seasonally. Although the extent of each subtype’s
circulation and exact case–age distributions vary from year to year, across the past two decades H3N2 has generally
caused a greater proportion of cases in high-risk older adults than H1N1 [38,39,56]. This pattern is consistent with the
hypothesis of imprinting to specific hemagglutinin subtypes.

● The two lineages of influenza type B have distinct age distributions of cases that are consistent with a combination of set-
and path-dependent cohort effects [44]. Certain cohorts have lower susceptibility to B/Yamagata than to B/Victoria both
because most people in those cohorts were imprinted with B/Yamagata and because many people have not been
infected with B/Victoria at all.
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immune cells to specific epitopes) and
host factors (immune history and
precursor frequency of immune cells
with specificity to each epitope).
Imprinting effects: cohort effects
caused by differences in immune
protection against influenza strains
similar to those that caused an
individual’s earliest childhood infections.
Original antigenic sin (OAS):
preferential recall of antibody responses
originally raised against the primary
strain.
Path-dependent: wherein differences
in past infection order affect the
specificity of immune memory that
different cohorts gain upon infection with
the same strains.
Response blunting: a phenomenon
wherein subsequent immune responses
are (on average) smaller in magnitude
than the primary immune response.
Serological studies: studies
measuring serum antibodies to a given
influenza strain. Assays measure
antibodies to different antigens or
epitopes of influenza. Hemagglutinin
inhibition (HI) assays, ELISA,
neutralization assays, and
neuraminidase inhibition are the most
common serological assays for studying
influenza responses.
Set-dependent: differences in
susceptibility due to older cohorts, but
not younger cohorts, having
experienced cross-protective antigens
from the past.
molecular, within-host and population level. A more systematic understanding of the within-host
causes and population-level consequences of path dependence in development of the immune
repertoire will facilitate a better understanding of when it is important to account for these patterns,
and how to model them.
immune memory reduces the total size (response blunting) and shapes the epitope specificity (epitope bias) of the
subsequent response (the broken outline separates the new response from the standing repertoire). The following year
strain y has one epitope in common with strain x, but the strength of cross-immunity hosts gain against strain y from a
past infection with strain x depends on immune history (adapted from [49]). (E) Set-dependent immunity implies tha
differences in the development of the immune repertoire depend on the identity of the antigens experienced in the past
but not on the order in which they were experienced. Here, immunity accumulates additively, so that all hosts gain the
same cross-protection against y from a past infection with x, regardless of their immune history. (F) Measuring response
blunting: current evidence shows a linear decrease in log boost with log titer to specific influenza epitopes [23,24,77] o
strains [24] (unbroken line) [77], but evidence for this quantitative relationship is limited and it could differ in other contexts
(broken lines). (G) Measuring epitope bias involves tracking how the fraction of antibodies or antibody-secreting cells
specific to a given epitope changes as a function of pre-existing titer to that epitope. The exact functional relationship and
the degree of epitope masking is predicted to depend on factors including antigen dose and the degree of steric
interference between epitopes [22–24]. (H) Illustration of epitope masking, in which pre-existing antibodies to the blue
epitope occlude binding of cognate B cells, whereas B cells to the pink, novel epitope are more able to bind and replicate.
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At the population level, birth year-associated differences in immune specificity and susceptibility
to new strains (Box 1) demonstrate the epidemiological impacts of path dependence. Individual
immune histories are rarely known, but birth cohorts are subsets of the host population born
at similar times that are assumed to have similar infection histories. Susceptibility to a given anti-
genic phenotype can differ between cohorts [1–3,35,37–43], a pattern known as a cohort
effect. Imprinting effects are a special kind of cohort effect in which hosts gain stronger
immune protection against antigenic phenotypes that circulated in childhood than against pheno-
types encountered later in life [37–39,44].Original antigenic sin (OAS) is a within-host process
in which repeated recall and boosting of cross-reactive antibodies reinforces strong immune
memory of earlier strains [45–51]. Although the existence of these patterns shows that the
order, not just the identity, of past infections can leave birth cohorts vulnerable to different anti-
genic substitutions, and can cause a strain’s fitness to vary across birth cohorts, the observed
strength and persistence of these effects varies, and their broader importance to population-
level evolutionary and epidemic dynamics is not clear.

We argue that the current lack of a clear conceptual model for how cohort effects arise is a key
obstacle to synthesis. Descriptive studies of cohort effects, imprinting effects, and OAS are
common. Further development of specific and quantitative hypotheses for these patterns will
make it easier to compare and reconcile effects observed in different contexts, and to agree
on definitions for the patterns we observe. To help facilitate these comparisons, we review
and highlight gaps in current conceptual frameworks for how birth year-associated differences
in susceptibility arise, focusing on measurable patterns that provide a basis for comparison
across studies.

Cohort-specific differences in susceptibility
Individuals born in a particular year are, on average, exposed to a similar series of influenza viruses
from childhood to adulthood. Therefore, cohort effects are evidence that infection history, including
the set of all strains seen in the past, and the order in which cohorts of different ages are exposed to
the same strains, can shape host susceptibility. In turn, strain fitnesswill varywith host susceptibility
if susceptible cohorts are more likely to become infected, or more likely to shed high viral loads and
contribute to transmission.

In many examples, cohort effects shape population susceptibility to avian, seasonal, or pandemic
influenza viruses (Box 1). However, the main similarity between these examples is the emergent
pattern – differences in the specificity of adaptive immunity associated with birth year – not
necessarily the underlying mechanism.

Cohort effects can occur due to set-dependent or path-dependent differences in
immune history
Failure to differentiate between distinct mechanisms that give rise to cohort effects is one main
source of confusion about their broader biological significance. We argue that there are two
main reasons cohorts can differ in susceptibility: set-dependent differences in immune history,
in which older cohorts, but not younger cohorts, were born early enough to have 'seen' a cross-
protective antigen from the past; and path-dependent differences in infection history, in which
differences in lifelong infection order affect the specificity of immunememory that different cohorts
gain on infection with the same cross-protective strain (Figures 1 and 2).

The concept of set dependence is fundamental to the concept of adaptive immunity: hosts pre-
viously infected with a given antigen gain protection, while hosts not previously infected lack pro-
tection. It is also fundamental to the concept of immune escape: novel antigens have a fitness
4 Trends in Microbiology, Month 2021, Vol. xx, No. xx
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Figure 2. Set-dependent versus path-dependent cohort effects. (A) Cohorts can differ in susceptibility due to
differences in the order or identity of past infections. (B–D) An example of imprinting. (B) Adult cohorts have lived through
decades of cocirculation of influenza A strains whose hemagglutinin antigens fall on two distant branches of the
phylogenetic tree. (Seasonal strains from hemagglutinin group 1, H1N1 and H2N2, are shown in blue, and strains from
group 2, H3N2, are shown in red.) If immunity accumulated in a strictly set-dependent manner, adult cohorts would show
equally strong protection against both groups, given repeated infections and immunizations (D), but instead cohorts show
stronger protection against the group that circulated in childhood, consistent with imprinting (C) (Box 1). (E,F) An example
of non-imprinting cohort effects. (E) Immune memory of a cross-reactive epitope present in past H1N1 strains (light blue
dot), which circulated most recently in the late 1970s, provided cross-protection against the 2009 H1N1 pandemic strain.
However, this epitope was shielded by a glycan and inaccessible from 1983 to 2009 [2,58]. (F) Younger cohorts born after
this cross-reactive epitope became inaccessible were immunologically naive to the 2009 pandemic strain, whereas older
cohorts had some cross-protective immunity. However, this set-dependent cohort effect did not persist. Younger cohorts
quickly built new immune memory on infection or vaccination with the 2009 strain (arrow).

Trends in Microbiology
advantage. Set-dependent effects are already incorporated into most conceptual or quantitative
models of influenza fitness and evolution.

Set-dependent cohort effects primarily occur when past antigens re-emerge in circulation.
Antigenic reversion to an ancestral state [57], loss of an epitope-shielding glycan [2,58], and
emergence of a reassortant pandemic strain [54,55,59] could all cause set-dependent cohort
effects. During pandemics, set-dependent cohort effects often give rise to a pattern called 'senior
Trends in Microbiology, Month 2021, Vol. xx, No. xx 5
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sparing', in which pre-existing immunity in older and more immunologically experienced cohorts
often shifts the mortality impacts of pandemic strains toward younger cohorts, relative to that of
seasonal strains [59,60].

Set-dependent cohort effects reflect a simple difference in adaptive immunity between cohorts
that were or were not yet born at the time cross-protective antigens last circulated. However, they
often involve protection from strains that older cohorts encountered at relatively young ages, and
therefore are easily conflated with path-dependent patterns, such as OAS and imprinting [60].
Given influenza’s perpetual evolution, it is unlikely that two humans would ever be naturally
infected with an identical set of strains in different orders (as in Figure 2A). Therefore,
animal model experiments may be needed to fully disentangle confounded set- and path-
dependent differences in susceptibility. However, it should usually be possible to identify set- or
path-dependent effects as the dominant driver of a cohort effect by (i) identifying key antigenic
sites that facilitate pre-existing immunity against the strain of interest, and (ii) asking whether all
cohorts have had (roughly) equal opportunities for exposure to cross-protective antigens in the
past (Figures 1 and 2).

Like senior-sparing effects, imprinting effects also involve strong immune memory of childhood
strains, but arise due to path-dependent, not set-dependent, differences in immune history. In
the following text, we outline hypotheses for path-dependent cohort effects, which are more
complex and less understood than set-dependent effects (see Outstanding questions).

Repeated recall reinforces memory of the strains that circulated in childhood
OAS is the leading hypothesis for imprinting [25,37,50,61]. However, the term OAS is used
inconsistently and its definition has been repeatedly clarified or reinterpreted [49–51,62,63].
Here, we briefly define OAS and its relationship to imprinting, although we further argue that
focusing on specific and measurable mechanisms underlying OAS is the best way to cut through
semantic confusion.

Influenza viruses evolve incrementally, and subsequent strains contain some antigenic structures that
are identical or similar to those of the primary strain. OAS is an immunological process in which
repeated recall and boosting of cross-reactive memory responses reinforce strong immunity against
the antigenic phenotypes encountered earliest [47,48,62,64]. In cross-sectional data, this leads to a
characteristic pattern in which individuals’ antihemagglutinin antibody titers are higher, on average,
against the influenza strains encountered in childhood than against strains encountered later in life
[26,27,45,46,65] (Figure 1B). Hierarchical memory of the strains encountered earliest is also known
as antigenic seniority [62]. Here, we refer toOASprimarily as the underlyingwithin-host process (recall
and reinforcement of cross-reactive memory) not to the emergent serological population-level pattern
(titers are highest to strains from childhood), which is consistent with the conventions of some
(e.g., [28,49,50,66–68]) but not all existing studies (e.g., [18,20,25,62,63]).

Imprinting effects: a potential epidemiological consequence of OAS
The hypothesis that OAS gives rise to population-level imprinting effects extends beyond
established serological evidence in two key ways. First, imprinting effects are an epidemiological
pattern involving birth year-associated differences in protection against a current strain or
subtype, not just a serological pattern involving differences in titer (Box 2). Second, immunological
biases toward the earliest encountered strains almost certainly involve many dynamically
intertwined arms of immune memory, including various interacting B and T cell subsets [69,70],
not just the antibodies measured by common serological assays. With these caveats in mind,
imprinting effects may be an emergent, epidemiological consequence of OAS.
6 Trends in Microbiology, Month 2021, Vol. xx, No. xx



Box 2. Limitations of serological data

The relationship between OAS’s emergent serological and epidemiological (imprinting) patterns is surprisingly complicated
and is still being resolved. Titers are a correlate of influenza protection [71,74]. However, OAS does not prevent adults from
mounting high titers against current strains [32,45,48,62]. (As illustrated in Figure 1(B,C) in main text, titers to childhood
strains can be marginally higher, on average, than titers to strains from adulthood, but both can simultaneously be above
the threshold associated with protection.)

Rather than completely preventing adults from developing antibodies to new strains, OAS is more likely to affect protection
by modulating the quality and specificity of a titer’s component antibodies. For example, OAS can cause hosts to deploy
antibodies that bind [25,28,47,67,75] or neutralize [1,28] past strains more effectively than the current strain. If recalled
antibodies neutralize the current strain poorly, then hosts showing high titers may still be susceptible to infection [1].
Overall, evidence shows that OAS can, but does not always, interfere with the quality of protection against strains encountered
later in life [49]. Measuring differences in neutralization, or differences in protection from severe and detectable disease, not just
differences in titer, is therefore essential when studying imprinting.

Trends in Microbiology
Cross-protective breadth
In common serological assays, antibodies cross-react poorly to influenza antigens of different
subtypes. Thus, OAS has traditionally been described at the within-subtype level. However,
there is growing interest in antibody, B, and T cell responses that target conserved influenza
epitopes, which can provide broader cross-subtype protection, and provide a potential basis
for universal influenza vaccination [71,72]. The proliferation of serological techniques to measure
antibodies to conserved epitopes has revealed that, contrary to the classical within-subtype
paradigm, OAS can also shape the quality and specificity of broadly protective, cross-subtype
immunity [25,73]. Similarly, the breadth of cross-protection from imprinting and other cohort
effects is context-dependent and depends on which epitopes are the dominant immune targets
and how conserved those epitopes are. For example, epitopes that are conserved between
influenza subtypes that have and have not previously circulated in humans are, by definition,
the only recognizable immune targets present on novel, avian subtypes, such as H5N1 and
H7N9. Imprinting protection against zoonotic H5N1 and H7N9 infections involves memory of
these conserved epitopes and provides broad cross-subtype protection [25,37,73]. On the
other hand, memory responses against familiar seasonal strains are more likely to target variable,
immunodominant epitopes, and in this context imprinting acts narrowly within a subtype [38,39].
The fact that immune breadth can shift in contexts where variable or conserved epitopes are the
dominant immune targets emphasizes the importance of specific antigenic hypotheses when
characterizing or comparing cohort effects.

Measurable components of OAS
There is no standard way to measure or objectively compare OAS across disparate studies.
However, OAS can be broken down into two measurable components, epitope bias and
response blunting, which provide a potential basis for comparison, and synthesis.

The first measurable component of OAS is epitope bias, which refers to a shift across subsequent
infections in the secondary immunodominance of epitopes that are conserved between current
and past strains [22,28,35,47,67,76] (Figure 1D,G). Figure 1D depicts a simple but unrealistic
case in which all epitopes are equally accessible, immunogenic, and mutable, while realistically,
epitopes differ intrinsically in primary immunodominance due to differences in antibody binding
affinity or structural accessibility. Evidence for OAS supports the hypothesis that the secondary
immunodominance of conserved epitopes increases across a series of infections, in that new
infections often boost responses specific to past antigens [28,47,67], but there is support for
an opposing pattern, epitope masking, in which existing antibodies can occlude binding and
replication of B cells cognate to the same epitopes (Figure 1H). Because B cells produce antibodies,
this can interfere with the generation of new antibodies to familiar epitopes [22–24]. Epitopemasking
Trends in Microbiology, Month 2021, Vol. xx, No. xx 7
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is predicted to interfere with OAS most strongly in the context of vaccination, when antigen dose is
low, and antigen does not replicate [22].

The ideal strategy to measure changes in secondary immunodominance would involve quantifying
how the fraction of antibodies or antibody-secreting cells specific to a given epitope changes as
a function of pre-existing titer (or of antibody-secreting cell precursor frequency) [22]. Further
experiments and improved methods are needed to quantify these relationships (Figure 1G).
Currently, absorption experiments [25,38,65] and measurement of antibody affinity to engineered
antigens [28,75,76] can be used to infer where within an antigen antibodies are binding. The main
limitation of these methods is that they usually provide coarse spatial resolution, for example,
providing the ability to quantify binding to the hemagglutinin head or stalk domain, but less often
to specific epitopes (but see [78,79]). Recent advances in microscopy have enabled finer-scale
direct mapping of antibodies in polyclonal sera to specific epitopes [66–69], but these methods
are not yet quantitative. Ongoing development of high-throughput microscopy methods and of
methods to infer preferred epitopes from polyclonal mixtures of antibodies [18] will improve our
ability to measure changes in secondary immunodominance going forward.

The second measurable component that could play a role in OAS is response blunting, in
which subsequent immune responses are smaller in magnitude than the primary response
[19,20,80,81]. Studies analyzing longitudinal titer data and some data on repeated vaccination
support the idea that individuals with higher pre-existing titers experience weaker boosts
[19–21,24,80,82], and have referred to these patterns as 'negative interference' [14] or
'antibody ceiling effects' [21,80]. Hypothesized mechanisms include that antibodies may
neutralize and clear antigen, or antibodies may inhibit B cell activation through epitope
masking, Fc receptor-mediated mechanisms, and other forms of occlusion [14,23,24]. As
illustrated in Figure 1D, response blunting could act synergistically with epitope bias to limit
the magnitude of de novo responses to new antigenic structures.

Themagnitude of blunting in serological studies can be quantified (measured) by estimating the
decrease in boost size per unit increase in pre-existing titer. In infection or vaccination experi-
ments, this is equivalent to the regression coefficient of boost size (fold change in titer) on pre-
existing log titer (Figure 1F) [22,24]. In longitudinal or observational studies, response blunting
can be estimated as a parameter in dynamical or statistical models [19–21,80].

Path dependence in development of strain-specific immunity
OAS gives rise to path dependence in the development of the immune repertoire (Figure 1D,E). In
turn, path dependence can give rise to cohort effects that are counterintuitive, and rarely included
in quantitative or conceptual models of strain evolution and host immunity. For example, hosts
with similar (and high) protective titers to a current strain (e.g., strain x in Figure 1D,E) can be
vulnerable to different antigenic escape mutations in the presence of path dependence [49]. Like-
wise, in examples of imprinting, cohorts recently infected (or experimentally inoculated) with the
same seasonal strains deployed antibody responses that differed in specificity and effectiveness
against a given challenge [25,37–39] (Figure 2B). These observations suggest that subsets of the
host population can drive selection of different antigenic phenotypes [34,79,83]. Theoretical
studies have shown that host heterogeneity can shape dynamics of competition between strains
and conditions under which strains can coexist [84,85], but these studies have not specifically
considered path dependence. Integrating path dependence into mathematical models that link
influenza’s evolutionary and epidemic dynamics (e.g., [4–6,86]) could help to elucidate whether it
primarily promotes strain competition (e.g., strains with high fitness in different cohorts competi-
tively exclude one another) or coexistence (e.g., through cohort-specific niche partitioning).
8 Trends in Microbiology, Month 2021, Vol. xx, No. xx
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Outstanding questions
How does heterogeneity in host immune
history and host imprinting shape
influenza’s epidemic and evolutionary
dynamics?

To what extent do set-dependent or
path-dependent differences in host im-
mune history contribute to competition
between, or coexistence of, multiple
influenza variants?

How can we predict which subsets of
the host population are most vulnerable
to specific antigenic substitutions, or to
specific forms of vaccine mismatch?

Canwe quantify the relative contributions
of epitope bias, response blunting, and
other forms of interference between
host immune memory and de novo
responses?

Does the relative dominance of a
pathogen’s variable and conserved
epitopes alter the dynamics of
interference?

How can path-dependent models
be used to accurately predict (i) how
influenza strains are selected for at the
population level, and (ii) which cohorts
were responsible for the selection?

What level of model complexity
is needed to understand the
consequences of cohort effects?

Do a person’s first few exposures to a
pathogen have lifelong protective
effects, or does the first exposure
alone dominate?

Do initially large cohort-specific dif-
ferences in susceptibility to a given
influenza lineage generally decrease
over time as the lineage continues
to circulate?

Can we generalize insights from
influenza to study how past infections
shape future population immunity, and
strain fitness, for other antigenically
evolving pathogens?
We hypothesize that a key difference between path-dependent and set-dependent cohort effects is
their persistence over time. Imprinted biases in the specificity of immunememory can persist for years
or decades, even in cohorts repeatedly exposed to diverse flu phenotypes [1,37] (Figure 2B–D). In
contrast, we hypothesize that set-dependent cohort effects are more likely than path-dependent co-
hort effects to be ephemeral, eroding within one or two influenza seasons as naive cohorts gain im-
munity through infection or vaccination. For example, infection or vaccination with the 2009 H1N1
pandemic strain allowed younger cohorts to build protective titers, eroding differences in immunity
with older cohorts (Figure 2F) [35]. Similarly, set-dependent 'senior sparing' effects do not persist
once a pandemic strain becomes established in seasonal circulation [59].

Cohort effects that cause large differences in susceptibility and persist across many epidemic
seasons are likely to meaningfully influence influenza’s evolutionary trajectory. Weak cohort
effects are less likely to have a meaningful impact, especially if susceptibility varies more among
individuals within a cohort than between cohorts. The relationship between epitope mutability
and immunodominance, or mutability and neutralization potency (neutralizing antibodies block
viral replication), is likely to shape the magnitude and persistence of path-dependent cohort
effects. Imprinting effects that persist for decades most likely involve epitopes that are conserved
and phenotypically stable across a host’s lifetime [38], but the role of more conserved and persis-
tent epitopes in defense against seasonal influenza is still being resolved. Responses to con-
served influenza epitopes are often recalled and boosted across repeated infections [28,87],
and they are a correlate of protection against seasonal influenza [68,71], but they are generally
considered immunosubdominant to, and less potent than, responses to variable sites, which
undergo rapid antigenic drift [28,35,51,68,88]. If there is an inverse relationship between influenza
epitopes’ conservation (persistence) and their immunodominance or neutralization potency
(importance in immune protection), then there may also be an inverse relationship between the
persistence and strength of cohort effects. (For example, for seasonal influenza, imprinted biases
in memory of conserved epitopes are persistent, but have relatively weak effects, perhaps
because conserved epitopes only play a small role in protection [38,39].) Testing this hypothesis
would require routine evaluation of cohort effects’ strength and persistence. Cross-sectional data
collected across many influenza seasons provides insight into persistence (e.g., [1,38,39,56]).
Strength can be measured by comparing a cohort’s observed risk to their expected risk in a
null model, or in long-term baseline data (e.g., [37–39,44]).

Concluding remarks
For influenza and other shape-shifting pathogens that evolve to escape host immunity, strain
fitness depends on a combination of viral factors and host factors. Cohort-specific differences in sus-
ceptibility are awell-documentedpatternwith unknown effects on influenza strain fitness and evolution.

Differentiating between set-dependent and path-dependent examples of cohort effects is a
needed first step toward organizing observed patterns and determining which observations are
at odds with common assumptions. Set dependence is fundamental to the concept of adaptive
immunity and to immune escape, so most studies of influenza virus evolution already account for
set-dependent differences in host susceptibility. In contrast, the epidemic and evolutionary
effects of path dependence are less studied.

Focusing on specific and measurable aspects of path dependence, such as response blunting
and epitope bias, can help us draw connections between observed patterns. The strength and
persistence of cohort effects are also measurable. Systematically studying how strength and per-
sistence vary in different epidemic contexts can help us to understand the importance of
cohort effects in shaping population susceptibility and strain fitness.
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